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Construction of boundary integrals for the wave equation, based on the analysis 

of eigenfunctions used in solving self-similar problems of plane wave diffraction, 

is presented for plane and three-dimensional cases. Derivation of these integrals 

is carried out similarly to the derivation of the Poisson’s integral for the Laplace 

eqnation.The result obtained in the plane case can be extended to the problem 

of diffraction of a wide class of plane waves on a wedge. Extension to the three- 
dimensional case is obtained for problems similar to those of a plane wave dif- 
fraction on a thin delta wing moving at supersonic speed. An example of the 
construction in quadratures of the problem of diffraction of a single wave on a 
thin delta wing travelling at a speed higher than the speed of sound is presented, 

The present investigation is to a considerable extend based on ideas in [l - 61. 

1. We consider the wave equation 
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For the diffraction of a plane wave of the form 

mn = (t - r cos (a + 0))” (0 = arctg (y / z), r = f/z” + Y”) 

on a wedge the solution has, also, the form of a homogeneous function of dimension n 

with respect to Z and r. The relation between homogeneous solutions of zero and ?Z 

dimension is defined by formula (1.2) in [7]. 
The homogeneous function of zero dimension satisfies the Laplace equation 

for which the Poisson’s integral 
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is known. 
Using formula (1.2) from [7], for the homogeneous solution of dimension n we obtain 

the boundary integral 

For any arbitrary plane wave and boundary conditions 
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at the circle r = t we have inside the circle r < t 

y = 2, _ ,:o;(;_ 0) h (1 - A) 

The relationship 1 

5 
0 

was used in the derivation of the integral (1.2). 

Integral (1.2) is valid if @ is of period T which is equal 2~ with respect to 8 _ 
This occurs, for example, in the nnalysis of diffraction of a plane wave on a plate moving 

at supersonic speed. When T = 2nk (k # 1 and is an integer), the result is more com- 
plex, In that case the Poisson’s integral is of the form 

(1.3) 

Taking into account (1.3) we obtain a boundary integral of the form 

i = W, E = 2 (P - P) 5, q = Eh (1 - h), Q Irat = f(0,, t) 

where p is a complex quantity. The integral over the closed contour is taken over a 
curve which is little different from c = 0 and surrounds point 5 = 0, 

2, Let us consider homogeneous solutions of Eq. (1.1) of half-integer dimension. Let 
cftp = r&pa (t I P, 9), then ‘pa satisfies the equation 

“qa 
(?L+-- 1) -- a% a2’pp 

&$4 6213--1)-&-+P%a+,e,==o, w= + (2.11 

As before, we consider solutions of Eq.(2.1) for specified conditions at the circle w = 

1 (r= t). To derive such solutions we examine the eigenfunctions of Eq.(2.1) at the 

separation of variables w and 0. The eigenfunctions that depend on 0 are equal co+ 8 
and sinp 0. For the eigenfunctions that depend on w we then obtain the second order 
ordinary differential equation 

(WZ - QY a ” - (2g - l)wys’ + (62 - $)ya = 0 (2.2) 

Equation (2.2) has two important properties 

Yp-1 = Yp’, ?Ip = q-1 - 
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of which the last loses its meaning when p = I/~. If fi = --Vz and p = v + V2, (2.2) 
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becomes the known Legendre equation. 
Using the first of formulas (2.3), we obtain the solution of (2.2) for p mu 1/Z 

yl,* = (76 - 1) Cl 
dJ’, (TN) dQ, (4 
-&-4C’T > 

where (P, (w) and Q (w) are Legendre functions of the first and second kind, respectively. 

Since the solution is being determined inside the circle r < t: we specify that Y,/* = 

1 for w = 1 , and that the quantity w-“‘~ Y,,~ must be finite when w -+ co. Then 

dQ, (4 
Y$ I--(w”-l)~ (2.4) 

The logarithmic singularity of O., (ID) at w = 1 is eliminated from (2.4) by the factor 
(rf? - 1). For example, for Y = --‘I~ 

where E is a total elliptic integral of the second kind. Thus the solution of Eq.(l. 1) 
with p = I/, is in the general case of the form 

(t*) 

If the period of @,,z with respect to 6 is 2n, then u = m, where m is an integer. To 

derive the boundary integral we use the Laplace integral representation for Legendre func- 

tions [S] and the expressions for the coefficients of the Fourier series expansion 
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Carrying out integration in formula (2.5) with respect to I, we obtain 

If the period of function a>,,, with respect to 8 is equal 2nk, it is necessary to set 
p = m I k, where k and m are integers. Then 
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For convenience of computation the integral I, in formula (2.6) can be represented for 
k=2a.s 
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R =w- lf/w2--i 
It will be seen that the integrand of 11 is expressed in terms of complete elliptic integ- 

rals. 
Using the second of formulas (2.3), we obtain 

(--l)n (yia - l)n+lzm Yl/, 
Yn+l/g = 2”nI dW ( ) wa-- 1 

which makes it possible to carry out the extension to any plane wave, as is done in Sect.1, 

8, Let us consider the wave equation in the space 

~~~~~~_~=~ (3. I) 

Borovikov had shown in [S] that solutions of Eq.(3. l), which are represented by func- 
tions of dimension -1/a homogeneous with respect to t and q = vza + ya + z2 , 
retice to the Dirichlet problem for the Laplace equation, The results obtained here make 
it possible to extend that conclusion to h~mogeneo~ solutions of Eq. (3.1) of any half- 
integer dimension ( +) . 

If CD,_,,, is a solution homogeneous with respect to t and Q of Eq.(3.1) of dimension 

n- ‘/a, @-I/% is a homogeneous solution of the similar equation of drmension - ‘/2 
and t-n+l@L~,, &=t = t”d?-J, Iqzt , then 

(3.2) 

For solutions homogeneous with respect to t and q of Eq. (3.1) of integral dimension 

we obtain the similar formula 

ac, 
n = (- l)n (ta - qy+1 

2nn! (3.3) 

where U?, and @,are solutions homoge~o~ with respect to f and Q of Eq.(3.1) of 

dimension 0 and n ,respectively. 
Taking into account results obtained by Borovikov [6], for the homogeneous solution 

of - 1/Z dimension of Eq.(3.1) we obtain the boundary integral of the form 
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~0s y = cos o cos w1 + sin 6.1 sin o1 cos (0, - O), F (a, 0) = 
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where CI) and 8 are angular spherical coordinates. Taking into consideration (3.2) we 
have 

*) V. V. Tret’iakov, On the problem of reducing in the self-similar case the solution of 
the wave equation in space to the solution of the Laplace equation. Theses of Proceed- 
ings of the fourth All-Union Symposium on the Propagation of Elastic and Elastico-Plas- 
tic waves, Kishinev, 1968. 
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@,,_,,% = 

0 0 
(t - q cos +p+*ls 

For the homogeneous solution of dimension zero we have the expansion in eigenfunc- 

where Q, (IL’) is the Legendre function of the second kind of integral dimension and 

Ynl(@, Cl) is a spherical harmonic of integral order. 

Using the Laplace integral representation for Legendre functions and also the Laplace 
formula (see e. g. , [9] > 

* 2x 

Y,(O,q= am*;* \ \ F (01, 6,) P, (cos 7) sin o1 do1 d0r 

where P, (COS y) is a Legendre’s kyynomial of power m,, F (0, 0) = m. Itzp, 
and the equality 
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after summation and integration with respect to h , we obtain the following boundary 

(3.4) 

integral: 7% 2x 
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and taking into account (3.3) 
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If q = t is specified at the sphere surface 
m 

then, taking into account the integral (3.5). we obtain 
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In the case of axial symmetry the boundary integral is obtained by setting in formula 
(3.4) F (wr, 0,) = F (pi) and integrating with respect to 0,. That integral is ofthe 
form 
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It should be noted that the obtained here results are only valid when the period of the 
potential with respect to 8, is equal 2n. In comparison with the plane problem this cor- 
responds to the case when it is not necessary to carry out conformal representation. 

4. As an example of the obtained results we present the solution of the problem of 
diffraction of a single wave on a delta wing moving at constant supersonic speed. 
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Let a delta wing whose angle of sweep at the vertex is n/2 - v move along its axis 
of symmetry in the negative direction of the z -axis of a Cartesian system of coordinates 
at constant supersonic velocity (M > 1). The y-axis is normal to the wing. The angu- 
lar spherical coordinates are chosen so that 

fl - arctg + , a = arctg vxy 
Let a single plane wave 

0 = H (t - q cos 0 cos cc + q sin 0 sin i3 sin a) 
q = fxa -+ y2 + 9, a = const 

where H is a unit function, impinge on the wing. 

Fig. 1 

The pattern of diffraction is schematically shown in Fig. 1. The flow is three-dimen- 
sional only inside the diffracted hemisphere centered at point 0 , and in remaining 
regions the solution can be obtained by using equations which define plane motion. 

Thus, for example, in regions ABNG and ACPF the solution is a constant of the form 

O=l-+L, L= 
M tgvsina 

1/(W - 1) tge v - i 

In region CBHM the quantity @ is also constant and equal two. 
Inside the half-cones with vertices at points A, B and C the solution is obtained by 

reducing the three-dimensional wave equation to a two-dimensional one by the substi- 
tution for the variables Z, and t of the single one z = (cot - zl) / I/U - 1, where 
L, is a constant that defines the velocity of motion of the half-cone vertex along its 

axis. 
That substitution reduces equation 
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The admissibility of such substitution becomes clear, if we introduce a moving system 

of coordinates with its origin at the half-cone vertex. The pattern of flow is then station- 
ary and it is seen that it is independent of the fourth variable. 

As regards the half-cones with vertices at points B and I’ the coordinates +, yr, z1 , 

and the quantity ;$, dre defined thus: 

;,, ~~. 2 / (cos CY cm fi), Yl --? !/ 

zr=zcOsIjt_rsirlb, q=rcOs~;IFszsinjj 

cos p = 11 -t (M cos fc + Ii’! tg” vy.2 

by? 
where the upper and lower signs relate, respec- 

Fig. 2 
tiVely , to vertices B and C 

For the half-cone with the vertex at point .4 
we have j, =M, I/~ = y, z, == - ;. and I~ =7 .z. 

It remains to determine in planes perpendicular to the half-cone axes the angles which 
separate different conditions on the surface of half-cones {see Fig. 2). We have 

sin x = 
sin ctcosa . 

Lcos$ ’ smE== s(B) 

sin x = sin d I cos p, sin E =L sin cL cos 6 / (L C0s p) (C) 

sine=siIlr,~Msina/(LJ/M”--1) (A) 

COS & = [(A,[ COs cz -t 1)” tg’ v + sin2 at-“’ 

where the letters in parentheses denote the vertices of related half-cones. 
For the boundary conditions at the surface of half-cones we have 

At the wing surface we have for all half-cones aWag = 0. This makes it possible to 
continue symmetrically the boundary conditions at the half-cone surfaces to the whole 

surface of cones and apply the Poisson’s integral. Since boundary con~tio~ at the sur- 
faces of cones are expressed in terms of sets of constant quantities, it is sufficient to ad- 
duce the solution for one of the cones (e. g. , for the cone with the vertex point B) ; so- 
lutions for the remaining cones are derived similarly. This solution is of the form 
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To simplify further exposition we denote the solutions inside cones with vertices at 

points A, B and C , respectively, by 

@ = 1 + or, Q, = t + @)2, Q, = 1 + 0s 

Note that there are three regions adjacent to the hemisphere in which the half-cones 
intersect. In these regions the solution is not a simple sum of solutions for two half-cones 
(if a continuous variation of solution at the boundary of these is required). 

For example, the solution in region VNDG is to be defined as 

@=1+@i+@,,-~ 

since this solution satisfies boundary conditions and the wave equation. Similarly, in re- 
gion FSPE the solution is 

@=1$-0,,+@a-L 
and in region HRMW 

CD = 1 -;- 0, + Q)s - 1 = 02 + 0s 

After the solutions have been determined in all regions adjacent to the sphere, the solu- 
tion inside the latter is obtained with the use of formula (3.4). Because of the condition 

that at the wing surface a@,/@ = 0 , the boundary conditions at the sphere surface must 

be symmetric about the surface y = 0. 

The derived solution defines the flow for y > 0. The solution for the wing underside 
can be obtained by using the equality @_ = - @+ .+ 2, where @+ is the solution for 

y > 0, and @- the solution for y < 0. 

It should be noted that the results presented here are valid only when the base of the 
diffracted sphere does not extend beyond the wing leading edges. Otherwise it is neces- 

sary to carry out special investigations different from those described here. 
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